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1 Dipartimento di Fisica, Università di Parma, Parco Area Scienze 7a, 43100 Parma, Italy
2 CNR-INFM (Parma), via G. P. Usberti 7a, 43100 Parma, Italy
3 INFN, gruppo collegato di Parma, via G. P. Usberti 7a, 43100 Parma, Italy

Received 25 June 2007 / Received in final form 8 November 2007
Published online 16 January 2008 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2008

Abstract. We study a two dimensional Ising model between thermostats at different temperatures. By
applying the recently introduced KQ dynamics, we show that the system reaches a steady state with
coexisting phases transversal to the heat flow. The relevance of such complex states on thermodynamic or
geometrical observables is investigated. In particular, we study energy, magnetization and metric properties
of interfaces and clusters which, in principle, are sensitive to local features of configurations. With respect
to equilibrium states, the presence of the heat flow amplifies the fluctuations of both thermodynamic and
geometrical observables in a domain around the critical energy. The dependence of this phenomenon on
various parameters (size, thermal gradient, interaction) is discussed also with reference to other possible
diffusive models.

PACS. 05.60.-k Transport processes – 05.50.+q Lattice theory and statistics – 44.10.+i Heat conduction
04.60.Nc Lattice and discrete methods

1 Introduction

The study of systems undergoing heat flows is a classi-
cal topic in non equilibrium statistical mechanics. Several
important results have been obtained, especially for one
dimensional models with continuous symmetries, such as
chains of anharmonic oscillators (see e.g. [1] for a review).
On the contrary, there are very few results for discrete
models in two dimensions. A ferromagnetic rectangular
Ising lattice with a “cylindrical” geometry, i.e. opposite
borders at temperatures T1 and T2 in one direction, and
periodic conditions in the other one, has been introduced
in [2] by Harris and Grant, and in [3] by Saito et al. (see
also [4] for recent developments on related matter). How-
ever, severe restrictions on the admitted temperature in-
tervals were present in both papers, due to intrinsic limi-
tations of the microcanonical dynamics used there (Creutz
or Q2R rules).

Such restrictions have been removed in [5] by intro-
ducing a peculiar new dynamics, briefly denoted as “KQ
dynamics”, combining the advantages of the Q2R and
Kadanoff-Swift rules. In this way, due to an effective
ergodicity in the whole range of temperature intervals
(T1, T2), steady states take place for all imposed tem-
peratures. In particular, for T1 < Tc < T2 (where Tc

denotes the equilibrium critical temperature), different
phases steadily coexist: a magnetized phase near the cold
border at T1, a paramagnetic phase near the opposite hot
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border at T2, and an intermediate phase around the region
at energy density Ec, the mean energy corresponding, at
equilibrium, to Tc. Moreover, the transport properties of
the system are well described by introducing an energy
dependent diffusivity. This occurs in a smooth way, pos-
sibly except around Ec, where the specific heat diverges
and the diffusivity vanishes in the thermodynamic limit.

Transport apart, an open problem – and our main
item indeed – is the physical relevance of such steady
states, characterized by many coexisting phases, as they
are distinct from homogeneous equilibrium states. More
precisely, for local physical observables, we ask if a por-
tion of the cylinder has recognizable and peculiar prop-
erties when a heat flow passes through it. In particular,
we shall concentrate on sections perpendicular to the flow
(columns, vertical bands). Two kinds of physical observ-
ables will be considered: thermodynamic quantities, such
as energy density and magnetization, and geometrical-
dynamical observables, for which the role of the config-
urations driven by the dynamics is predominant. The lat-
ter observables are based on the metric properties of the
configurations, which may involve very different items:
the integral of pointwise differences (i.e. the well known
Hamming distance), which in some cases assumes an “en-
ergetic” meaning, or the measure of differences in clus-
ter distributions (Rohlin distance), an information-based
metrics requiring the formalism of partition spaces.

The main point is the existence of an energy band
∆E, starting just below Ec, where the observable



500 The European Physical Journal B

fluctuations are remarkably wider for a system un-
dergoing a heat flow with respect to thermalized or
close systems. The same happens to the distances be-
tween configurations. All this may be read as evidence
of a larger variability of the system when it is far
from equilibrium. These features strongly depend on
the size L, and they disappear in the thermodynamic
limit L → ∞. More precisely, as expected, they van-
ish as soon as the energy gradient between neighbour-
ing columns becomes infinitesimal and local equilibrium
is reached. However, since real systems are characterized
by finite gradients and finite sizes, such large fluctuations
could be relevant in the study of mesoscopic systems with
stationary flows.

We recall that there are examples of exotic dynamics
where the local equilibrium is not reached even for in-
finitesimal gradients [6]. Remarkably, also in such cases
fluctuations are larger in the presence of heat flow.

A number of questions arise. For instance, how much
do these features depend on the chosen dynamics? And
which is the role of the specific spin interaction? As for
the former question, the robustness of our results has been
tested by many checks, improving, in addition, the relia-
bility of the results described in [5]. The latter question
is evidently crucial for the possible physical relevance of
the results. Now, for a purely diffusive process, e.g. a Ran-
dom Walk (RW), analogous experiments clearly indicate
the absence of the described phenomena, showing the es-
sential role played by the interaction. However, a deeper
insight on the nature of admissible interactions would re-
quire a more sophisticated analysis, not developed here.
The same holds for the role of other possible relevant pa-
rameters, such as the topology of the underlying structure
or the presence of noise in the interactions.

The paper is organized as follows: in Section 2 the
model is introduced, with KQ dynamics (2.1), and with
definitions and notations for the quantities involved in ex-
periments (2.2, 2.3); in Section 3 we review the main re-
sults obtained from numerical experiments. Problems re-
called above (relevance of KQ dynamics on the results,
etc.) are discussed in Section 4, with further comments and
perspectives on future work. Finally, in the Appendix, we
summarize the essential information on the formalism nec-
essary to define the Rohlin distance in partitions spaces.

2 Model, dynamics, notations

2.1 The cylindrical Ising model

The cylindrical Ising model considered in [3] and [5] is a
LX × LY rectangular lattice, with periodic conditions in
the Y direction and open boundaries in the X direction.
We assume LX = LY = L. The spin variable σx,y may
be 1 or −1, and adjacent opposite spins give an energy
unit to the system. Thus, by denoting 〈x, y〉 the nearest
neighbours of (x, y), the normalized total energy Etot is:

Etot =
1

4L2

∑

x,y

∑

〈x,y〉

1 − σx,yσ〈x,y〉
2

. (1)

The lattice is naturally sliced into “columns” with a circu-
lar symmetry. The first and last columns, i.e. the left and
right borders, interact with two thermostats, simulated by
two sets of supplementary columns evolving with the usual
equilibrium Metropolis algorithm (see [5] for details). The
Boltzmann’s constant K is assumed to be 1.

Internal sites must evolve preserving the energy, and
the microcanonical rule used throughout the paper is the
KQ dynamics introduced in [5], for the reasons discussed
there. In order to define such a dynamics, we must previ-
ously recall the Q2R and Kadanoff-Swift (KS) moves:
Q2R move: in every chosen site the spin is forced to flip
whenever energy is preserved, i.e. when half spins in the
neighborhood are up and half are down (see e.g. [7–9]).
KS move: consider a diagonal with two opposite
spins, and exchange them whenever energy is preserved
(see [10]).

The second-neighbours exchange in KS is essential for
the dynamization of otherwise frozen configurations near
the cold border, ensuring an effective transitivity in the
configuration space. Then the evolution rule may be de-
fined as follows:
KQ Dynamics: a single KQ step is a sequence of L ×
L randomly alternated Q2R and KS moves on randomly
chosen sites and diagonals. Such a step defines the natural
time unit τ .

Besides tests already performed in [5], the reliability of
the KQ dynamics has been successfully checked by looking
at the robustness of the results with respect to various
perturbations. A meaningful test, for instance, consists in
a neat change of the randomness criterion in the choice
of sites and diagonals to be moved. By using a RW path
(which could be also a physically reasonable procedure) we
obtained indeed the same results, possibly apart the time
scale. In all cases, a steady state is easily established.

Another important aspect we have verified is that even
for small systems (L = 16) with large temperature differ-
ences (T1 = 0, T2 = 7) the energy flow can be described
by means of a Fourier-like equation with an energy de-
pendent diffusivity. Therefore, data reported in Figure 1
should be seen as an improvement of those in the figure
10 of [5]. This confirms the correctness of the ansatz and
the reliability of the results presented there also very far
from local equilibrium, i.e. independently of any reference
to quasi equilibrium local temperature. Indeed, it is worth
underlining that, in this microcanonical context, and es-
pecially for small sizes, the local temperature is not defi-
nite inside the lattice. Therefore, the appropriate quantity
characterizing local properties is the mean local energy.

2.2 Thermodynamic observables

Typical quantities considered in [5] are the mean energy
densities of the columns, or 〈Ex〉, where x is the column la-
bel, and averages run for each x on both time and column
sites. This may be seen as a particular case of a general
frame. By averaging at every time t along the Y direction
only, Ex ≡ Ex(t) is a discrete time series; analogously for
the squared magnetization M2

x(t) of the xth column. All
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Fig. 1. Diffusivity calculated as in reference [5] for L = 16
and several ∆T , proving the consistency of assumptions also
for small size (and high gradients) systems.

typical statistical features of time series, first of all time
averages and mean square deviations, may be easily calcu-
lated. As usual, well stabilized values out of long runs will
be considered equivalent to the asymptotic ideal values for
all practical purposes.

An interesting point consists in the systematic compar-
ison between the Ising model with a heat flow (or IMF,
for brevity) and the closed Ising model (or CIM), i.e. the
two dimensional toroidal lattice whose energy (a constant
of motion in this case) will be fixed with suitable criteria.
Alternatively, one can compare the IMF and the thermal-
ized Ising model (or TIM) where the flow is zero because
the borders are fixed at the same temperature.

More precisely, such comparisons require the following
steps: 1 – evaluate the mean energy Ex̃ of a particular col-
umn x̃ in the IMF; 2 – fix equal border temperatures for
the TIM or the total energy of the system for the CIM in
such a way that the average energy of any column in these
systems is equal to Ex̃; 3 – follow the time evolution of
the systems (IMF, TIM and CIM) in order to obtain three
sequences of decorraleted values for the different observ-
ables (e.g. Ex̃ and M2

x̃); 4 – compute statistical properties
of the obtained time series.

These comparisons aim to stress the influence (if any)
of the local flow on physical observables with respect to
different types of thermalized systems.

Of course, an additional check is the comparison be-
tween TIM and CIM, which should converge to the same
behaviour for all observables at least when L → ∞.

2.3 Geometrical observables

In order to give evidence to possible correlations between
heat flow and configurational features, we need a different
kind of observables. Such observables have already been
used to study equilibrium states in spin systems (precisely
Ising systems, with or without long range correlations)
proving useful in focusing certain peculiarities of configu-
rations around the critical phase [11,12].

The precise definition of these quantities requires the
formalism of configuration and partition spaces, as briefly
summarized in the Appendix. However, the main idea
is the following: consider the configuration of a column
a ≡ a(x, t) as a discrete periodic array of L binary val-
ues. A probability measure µ is easily defined on the array
subsets by the normalized number of nodes in each sub-
set. This way, an array a (or more precisely the triple
constituted by a, µ and the algebra of subsets) becomes
a particularly simple example of finite probability space.
An array may be partitioned into homogeneous clusters
{A1, A2, ..., An} of consecutively aligned spins, and this
collection α ≡ {A1, A2, ..., An} may be seen as an element
of the “partition space” ZL built on the probability space
a(x). We have established a correspondence Φ between
configurations and finite measurable partitions, or, more
explicitly

α(x, t) = Φ(a(x, t)).

In this case, the natural order of the cluster sequence
identifies the partition by the first Y coordinates of each
cluster. Shannon entropy, conditional entropy, Rohlin and
Hamming distances between two arbitrary columns are
therefore well defined functionals (see Appendix). We shall
consider in particular the following observables:

1. the Rohlin distance at a time t between partitions α(x)
and α(x + 1) associated to consecutive columns a(x)
and a(x + 1) of the same system, i.e.

dR(x, t) = dR(α(x, t), α(x + 1, t));

this distance is a measure of the non similarity between
adjacent columns, with regard to the cluster distribu-
tions;

2. the Rohlin distance between decorrelated columns
with the same energy (same label x). This is a measure
of the non similarity between independent columns.
Decorrelated configurations can be obtained consider-
ing either two distinct systems evolving independently,
or the same system and an evolution time ∆t much
larger than the decorrelation time. Therefore, the dis-
tances we consider are

dR(α(x, t), β(x, t)) or dR(α(x, t), α(x, t + ∆t))

respectively;
3. the Hamming distance between two adjacent columns,

as in item 1, i.e.:

dH(x, t) = dH(a(x, t), a(x + 1, t)) ;

this is another and very different measure of non simi-
larity, focusing on pointwise differences, independently
of the neighborhoods. Moreover, in this case, dH(x, t)
represents the energy between a column and the next
one.

The observables defined above, like the previous thermo-
dynamic quantities, produce discrete time series, admit-
ting statistical analysis (means, deviations, etc.).
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3 Numerical experiments

As anticipated, numerical experiments tend to stress the
influence of the heat flow on significant observables, by
comparing IMF and CIM or TIM. Data, in the following,
will refer to both time averages and averages over mul-
tiple experiments. Time averages extend as usual up to
stable results. Actually, averages run over 105–106 sam-
pled values, ensuring an excellent stabilization, as if, for
all practical purposes, the limit t → ∞ had been reached.

3.1 Energy and magnetization

The first quantity we shall consider is the energy density
along the X direction, or Ex, x being the label of the ar-
ray a(x), the configuration of the xth column. For each
column the mean in the Y direction is always assumed.
Consider a system sampled at times t0, t1, t2, ..., where
the starting t0 occurs after a suitable transient (e.g. 50 to
100 times τ for L = 16). Moreover, in order to have suffi-
ciently decorrelated configurations, ∆t ≡ tk−tk−1 > 100τ .
Several ∆t’s have been tested. The resulting time series
{Ex(tk)} depends also on L and the border temperatures
(T1, T2). Then, for every x there is a mean energy density
〈Ex〉, and a Mean Square Deviation F = 〈E2

x〉 − 〈Ex〉2
(here F stands for fluctuation). Such diagrams are plot-
ted in Figure 2 for L = 16, 32, 64 and 128 at fixed (T1, T2).
Here T1 = 0.01, T2 = 4, and the same in the following,
otherwise differently stated. In the same figure, at the pre-
scribed energies 〈Ex〉, the fluctuations of the closed system
(CIM), are plotted. Since they almost coincide for differ-
ent sizes, only the case L = 16 is reported, with the error
bars. These diagrams show that:

– discrepancies ∆F between IMF and CIM, defined as

∆F = F
IMF

− F
CIM

(2)

(obviously, this definition may be adapted to vari-
ous cases and observables), are especially important
around the critical energy density Ec, in a range
∆E ≡ (Ec − δ1, Ec + δ2), with δ1 very small. More-
over, ∆F > 0, i.e. fluctuations are always greater for
IMF;

– both the width of ∆E and the maximal amplitude of
∆F depend on L. Indeed, as L grows, ∆E decreases
and discrepancies ∆F slowly shrink. The way ∆E de-
creases seems faster in fact than the correlated way the
max | ∆F | vanishes;

– by comparing data relevant to different sizes, we find
that, within ∆E and sufficiently far from Ec, ∆F scales
like 1/L. As for the very critical point Ec, our numeri-
cal data do not allow any accurate prediction about the
behaviour of ∆F , however, they suggest that ∆F de-
creases slower than 1/L, as L grows. Interestingly, this
can be read as a weak trace of criticality around Ec.

We remark that the neighborhood of a certain column
undergoing a heat flow becomes more and more indistin-
guishable from an equilibrium neighborhood as L → ∞.
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Accordingly, it is plausible that the column properties,
inasmuch as they are related to the state of its neighbor-
hood, tend to mimic the equilibrium properties in this
limit.

In the same spirit, in Figure 3 we can observe, at fixed
L = 16, the effect of lowering the difference ∆T ≡ T2−T1

for IMF. The convergence of IMF to CIM is again clear,
starting from Ec − δ1 up to Ec + δ2, where δ1 is very thin
and δ2 is smaller and smaller as L grows.

Neatly below Ec − δ1, or above Ec + δ2, the coinci-
dence between IMF and CIM is quite good for all L and
∆T . A natural question is the reproduction of the same re-
sults using a TIM instead of a CIM, i.e. a thermalized sys-
tem with equal border temperatures, such to give suitable
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mean energies for comparisons. As a matter of fact, both
CIM and TIM give indeed qualitatively equivalent results
with respect to IMF; however, at the observed sizes, they
do not coincide (see again Fig. 3). One expects, of course,
that only for sufficiently high L’s a good agreement will
take place.

In general, the observed behaviour confirms a fact al-
ready noticed in [5], i.e. enlarging L is equivalent to zoom-
ing on a system with a lower ∆T , so that the thermody-
namic limit should give to every column the same features
of a system in local equilibrium. Clearly, such a zooming
property is not an absolute equivalence, since a finite size
TIM cannot reproduce an infinite size IMF. The equiva-
lence refers only to the onset of local equilibrium due to
the vanishing of the gradient between left and right side
of each column. Moreover, critical properties could disturb
the continuity of this process around Ec.

Consider now the squared magnetization M2, which
above the critical energy coincides with the mean square
deviation of M . For a fixed size (here L = 64), in Fig-
ure 4 we plot the mean values of M2 vs. energy: the IMF
diagram is neatly above the CIM diagram in the same
region previously identified by energy fluctuations, from
Ec−δ1 up to Ec +δ2. Hence, in the same domain, also the
magnetization fluctuations are larger in the IMF system.

3.2 Metric properties

The energy between a column and the two adjacent ones
(X direction) should feel, in principle, the asymmetry be-
tween left and right neighbourhoods. Clearly, as remarked
in Section 2.3, such a longitudinal energy between close
columns coincides with their Hamming distance dH (see
Appendix for definitions), giving this metric concept also
a physical interpretation. In Figure 5, the expected dif-
ference between IMF and CIM for this quantity may be
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easily recognized, once again in the same region previously
evidenced by energy density and magnetization.

A quantity directly related to the configurations, more
precisely to the cluster distributions, is the Rohlin distance
dR (see Appendix), which may be measured with various
attitudes. For generic partitions, dR(ζ, η) is the amount
of information necessary to distinguish ζ from η, i.e. a
measure of their non-similarity. Such a non-similarity, in
our case, can regard both spatially or temporally distinct
cluster distributions. Since this appears deeply related to
the variability of configurations, dR is a good candidate,
in principle, to be an indicator of the influence of a gra-
dient on steady states. First of all, we consider couples
of adjacent columns, so that the longitudinal energy dH

is a meaningful alternative abscissa. The mean values and
fluctuations of dR vs. dH are plotted in Figures 6 and 7 re-
spectively, confirming the larger variability of IMF system.

It would be also interesting to understand if it is pos-
sible to distinguish systems with or without heat flow by
looking at a single column. To this end we consider the
sequence of uncorrelated configurations at times t1 . . . tk,
calling αk ≡ α(x, tk) the corresponding partition for the
xth column (see Appendix for details). We calculate the
numerical sequence of distances: dR(αk, αk+1). Such a se-
quence follows the “novelty creation” along an orbit for
every examined column, whereas the previous sequence
followed the evolution of an isochronous gradient of nov-
elty between adjacent columns. In both cases, fluctuations
give overall estimates of such dynamic or isochronous vari-
ability.

In Figure 8 we observe the behaviour of time aver-
aged dR(αk, αk+1) for L = 16, 32, 64 as a function of the
energy of the corresponding columns. For clearness, we
have splitted the comparison in two frames, 16–32 and
16–64 respectively. Apart the incidental inversion between
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IMF and CIM at L = 16, at larger L, IMF-distances are
greater than the corresponding CIM-distances. Once again
the larger variability of the system presenting heat flow is
evidenced.

We note also that the maximum evolves with L: the
peak grows logarithmically, as expected, while the peak
abscissa slowly decreases.

As to fluctuations, results summarized in Figure 9 are
extremely similar to those in the previous Figure 7.

Three points have to be stressed:

– the remarkable likeness between Figures 7 and 9 is far
from being trivial, since partitions are strictly corre-
lated in the former case, uncorrelated in the latter;

– fluctuations are only slightly wider in the uncorrelated
cases;
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– the region interested by a discrepancy between IMF
and CIM is again the same, possibly with a small shift
toward low energies for the left bound.

A further remark is that nothing would be different in
Figure 9 using partitions from two independent systems:
this confirms the complete decorrelation of configurations
along an orbit within ∆t.

4 Conclusions and perspectives

All numerical experiments on the Ising cylindrical model
converge on the fact that the imposed heat flow reveals
in a wider amplitude of fluctuations for local observables.
Recalling the robustness of present results with respect to
small perturbations of the dynamics, as remarked in (2.1),
a natural question arises: how much does this behaviour
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depend on the IMF peculiarities? In other terms, would an
asymmetry in the boundary conditions, as the left-right
temperature difference in our model, be automatically
translated into amplified fluctuations, when imposed on a
generic lattice system? If so, being a general consequence
of spatial asymmetry in probabilistic processes, this fea-
ture would be very weakly related to physics. We would
argue, on the contrary, that the observed behaviours of
IMF vs. CIM or TIM are non trivially related to real meso-
scopic features of a magnetic system.

First of all, a point stressing the physical meaning of
our experiments is that the influence of heat flow on ob-
servables appears to be deeply related to the peculiar way
an Ising rectangular model passes through the critical re-
gion. The amplification, as remarked, does not regard in-
deed the whole of a steady state, but only a relevant neigh-
borhood of the magnetic transition. On the contrary, for
small values of T1 and high values of T2, observables in the
regions close to the borders are practically indistinguish-
able from those in equivalent equilibrium states. This last
feature may be understood in terms of typical configura-
tions: near the cold border, there are indeed sparse spots of
one or two sites, making the left and right neighborhoods
of the observed column practically identical. The same
happens near the hot border, provided that the temper-
ature is sufficiently high to establish a uniform disorder,
this time because of the irreducible fragmentation into
thin clusters. Only in the intermediate region there is a
meaningful difference between left and right sides, reflect-
ing the growth and subsequent fragmentation of clusters
in the X direction. Columns are slices of such clusters, with
a shape dependence on x heavily related the properties of
the Ising system.

A further indication that an asymmetry in boundary
conditions is not sufficient to explain the larger variability
of IMF is provided by a simple study of the paradigmatic
model of non interacting diffusion, i.e. RW on a lattice.
Precisely, by imposing different densities of walkers at the
borders, it is possible to show that, even in the presence
of a strong density gradient, fluctuations in the system
remain unchanged.

Hence, a purely diffusive RW is too poor to reproduce
the behaviour we have observed in the Ising model, where
evidently interaction plays a fundamental role. In the same
way, the very existence of a critical temperature (or en-
ergy), which is certainly related to the observed effects, is
irreproducible by simple RW. In order to clarify the sub-
ject, local interactions should be introduced in the RW
model, mimicking the role of the energy dependent dif-
fusivity in IMF. This may be done in several ways, and
studies in this direction are in progress, as well as tests on
totally different dynamical systems (e.g. asymmetric sand-
piles). All this will be fully reported in another paper.

Finally, we remark that the relevance of a finite (i.e.
non infinitesimal) thermal gradient, or the consequent
vanishing of ∆E and ∆F in the thermodynamic limit, do
not imply that the observed effects are physically mean-
ingless. There are no reasons indeed to consider finite size
properties as unphysical. A mesoscopic situation (L finite)

with peculiar non-equilibrium features could be equally or
even more interesting from a physical point of view.

We thank N. Macellari and E. Vivo (Parma) for important
discussions in the early phase of the work.

Appendix A: configurations, partitions spaces
and distances

Let M be a graph with L nodes or sites aj assuming values
in an alphabet K. A configuration on M is a whole set
a = {aj}, aj ∈ K. It is an element of C = C(M), the set
of all |K|L possible states of the lattice. For instance, if
M is a discrete array (as in the case of our columns) or
a square lattice, and K = {−1, 1}, this description fits
Ising-like systems.

A path, is a sequence of “near” sites, and a connected
cluster is a set of sites with the same value in K which are
connected by a path. For general graphs, clusters are con-
nected but not necessarily simply connected sets. Since ev-
ery site belongs to a single cluster, clusters Ak are disjoint
subsets of M and

⋃
k Ak = M. In other terms, the clusters

collection is a “finite partition” of M, whose subsets {Ak}
constitute its “atoms”. The partition space Z = Z(M) is
the set of all finite partitions of M. The correspondence
Φ : C → Z between a configuration a ∈ C and the clusters
partition α ≡ (A1, ..., AN ) ∈ Z, i.e. α = Φ(a), is “many to
one”, because configurations generated by permutations
in K are mapped into the same partition.

For every subset A of M, let µ(A) be the normalized
number of nodes in A. This defines a probability measure
µ in the algebra M of subsets of M.

For standard operations on partitions in Z(M) classi-
cal textbooks are e.g. [13–16]. For applications in the spirit
of our demands, see also [11,12,17,18]. Here we only recall
the definitions of Shannon entropy and Rohlin distance.

Let α = (A1, ..., AN ) be a partition: its Shannon en-
tropy H(α) is

H(α) = −
N∑

i=1

µ(Ai) ln µ(Ai) . (3)

The Shannon entropy does not depend on the shapes of
the atoms, but only on their measures. If β = (B1, ..., BM )
is another partition, shapes implicitly influence the condi-
tional entropy of α with respect to β:

H(α|β) = −
N∑

i=1

M∑

k=1

µ(Ai ∩ Bk) ln
µ(Ai ∩ Bk)

µ(Bk)
. (4)

Then, the Rohlin distance dR between partitions is de-
fined by

dR(α, β) = H(α|β) + H(β|α) . (5)

This makes Z(M) a metric space. The Rohlin distance
expresses how different two partitions are.
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If K itself is a metric space (e.g. a numerical set with
the usual distance between numbers), one can also con-
sider in C(M) the Hamming distance dH which, for con-
figurations a and b, is defined by the functional

dH(a,b) =
∑

j

| bj − aj | (6)

(possibly normalized by dividing by L). In our case, as
noticed in Section 3.2, the Hamming distance between ad-
jacent columns is the energy between them.

In general, Hamming and Rohlin distances are not di-
rectly comparable. The former is between configurations,
and it is sensitive only to actual values of corresponding
nodes, not to their distribution or neighborhood, whereas
the latter is between partitions, and therefore it is sensi-
tive to the cluster shapes. In principle, dR and dH may
give very different information. With a binary alphabet,
for instance, complementary configurations have maximal
Hamming distance (dH = L), while the corresponding
partitions coincide (dR = 0).

If a configuration a ∈ C has discrete evolution

a, Sa, S2a, ..., Sna, ...

one can speak of “configurations orbit”. The correspond-
ing dynamics Ŝ on Z is defined by

Ŝα = Ŝ Φ(a) = Φ (Sa) (7)

so that to a configurations orbit there corresponds a par-
titions orbit {Ŝnα} ≡ {Φ(Sna)}. Clearly, the probability
measure µ in Z is not preserved by Ŝ, because clusters
do not evolve in themselves but are redefined at every
step by the pointwise dynamics in C. However, we are not
interested here in indicators requiring a preserved mea-
sure, such as Kolmogorov-Sinai entropy or Lyapunov ex-
ponents.

Real valued observables F or F̂ , in C(M) or Z(M),
give rise to “time series” {fk} = {F (Ska)} or {f̂k} =
{F̂ (Ŝkα)}. Such time series are typical objects of our in-
vestigations.

This formalism applies in principle to every kind of
lattices and discrete dynamics. Note however that when
M is a one dimensional array, as in the case considered
here, the Rohlin distance is essentially simpler than in the
two-dimensional case, because of the geometrical nature
of the atoms contours: points in the former case, possibly
cumbersome paths in the latter (see e.g. [11,12,18]). For
the Hamming distance, on the contrary, the computational
complexity would be almost the same.
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